Synthesis and Adsorption Property of Zn(NH$_3$)$_2$(CO$_3$)

CLAIM:
Adsorption property for Zn(NH$_3$)$_2$(CO$_3$) was discovered. The material exhibit significant selectivity to separate CO$_2$ from N$_2$, H$_2$, O$_2$, and CH$_4$.

NOVELTIES:
• Setting up a novel synthesis approach to produce Zn(NH$_3$)$_2$(CO$_3$).
• Discovering the adsorption property for Zn(NH$_3$)$_2$(CO$_3$).

FEATURES:
• High chemical and thermal stability of the adsorbents.
• High CO$_2$ adsorption capacity.
• High selectivity to separate CO$_2$ from N$_2$, H$_2$, O$_2$, and CH$_4$.

MILESTONES—to—DATE:
• Building and Dem-Val of prototype is done.
• The product is well-characterized.
• Provisional filed with IP Office.

POTENTIAL APPLICATIONS:
• CO$_2$ separation in:
 - Hydrogen production plants
 - Natural gas sweetening
• CO$_2$ capture and storage (CCS) in:
 - Power plants
 - Heavy industries

COMPETITIVE INDUSTRY PLAYERS:
• DOW
• BASF
• Munters
• Exxon
• GE

INVENTOR(S) EXPERTISE
Nasser Khazeni
PhD Candidate, IEE/WERC, NMSU

Dr. Abbas Ghassemi
Professor Emeritus, Department of Chemical & Materials Engineering

Dr. Reza Foudazi
Assistant Professor, Department of Chemical & Materials Engineering

Dr. Jalal Rastegary
Research Scientist, IEE/WERC, NMSU

Property of Arrowhead Center.
Do not duplicate/distribute.

For more information please contact:
Terry Lombard at 575.646.2791 or tlombard@nmsu.edu